Dielectric and Optical Band Gap Studies of Nanostructured Manganese Nickel Oxide and Cobalt Nickel Oxide

نویسندگان

  • C R INDULAL
  • R BIJU
  • DEEpAk NAND
  • R RAvEENDRAN
چکیده

Nano oxides of Manganese Nickel and Cobalt Nickel were synthesized by chemical coprecipitation method from the reaction of respective metal sulfides of manganese, nickel, cobalt and sodium carbonate using ethylene diamene tetra acetic acid as an effective capping agent. The carbonate precursors were heated at different temperatures so as to form their oxides. Through the X-ray line broadening technique, the mean particle sizes were calculated at different temperatures. The elastic micro strains versus particle size variations were thoroughly studied. The metal oxide formations of Manganese Nickel and Cobalt Nickel were confirmed with the help of FTIR spectra. EDX spectra of Manganese Nickel oxide and Cobalt Nickel oxide provide chemical composition of the samples. The crystallite shapes were studied using the scanning electron microscopy images. The optical direct band gap values of both Manganese Nickel and Cobalt Nickel oxides were calculated using Tauc’s relation. keywords: Nanoparticles, SEM, EDX, Optical band gap, Dielectric properties

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Electrical and Optical Characteristics of Nanohybride Composite (Polyvinyl Alcohol / Nickel Oxide)

Some issues; leakage, tunneling currents, boron diffusion are threatening SiO2 to be used as a good gate dielectric for the future of the CMOS (complementary metal- oxide- semiconductor) transistors. For finding an alternative and novel gate dielectric, the NiO (Nickel oxide) and PVA (polyvinyl alcohol) nano powders were synthesized with the sol-gel method and their nano structural p...

متن کامل

Synthesis, characterization and optical band gap of Lithium cathode materials: Li2Ni8O10 and LiMn2O4 nanoparticles

Li2Ni8O10 and LiMn2O4 Nanoparticles as cathode materials of lithium ion battery, were successfully synthesized using lithium acetate, nickel and manganese acetate as Li, Ni and Mn sources and stearic acid as a complexing reagent. The structure of the obtained products were characterized by FT-IR and XRD. The shape, size and distribution of the Li2Ni8O10 and LiMn2O4 nanoparticles were observed b...

متن کامل

Synthesis, characterization and optical band gap of Lithium cathode materials: Li2Ni8O10 and LiMn2O4 nanoparticles

Li2Ni8O10 and LiMn2O4 Nanoparticles as cathode materials of lithium ion battery, were successfully synthesized using lithium acetate, nickel and manganese acetate as Li, Ni and Mn sources and stearic acid as a complexing reagent. The structure of the obtained products were characterized by FT-IR and XRD. The shape, size and distribution of the Li2Ni8O10 and LiMn2O4 nanoparticles were observed b...

متن کامل

Solid State Process for Preparation of Nickel Oxide Nanoparticles: Characterization and Optical Study

In the present work, we report preparation of NiO nanoparticles with well-defined plate morphology by solid-state reaction of NiCl2∙6H2O and the Schiff base ligand N,N′-bis-(3-methoxysalicylidene)benzene-1,4-diamine), as a novel precursor via solid state thermal decomposition method. This method is a simple and environmentally friendly for preparing t...

متن کامل

بررسی تاثیر شیوه خشک سازی بر خواص اپتیکی فیلم های نازک نانو ساختاری اکسید نیکل

The nanostructured nickel oxide thin films were prepared by dip coating sol – gel method. Three methods (drying with oven, IR and microwave) have used for drying the films. The effect of drying method on the optical, molecular, electrical, structural, and morphology properties of the films were studied by Uv-Visible spectrophotometry, Fourier Transform Infrared spectroscopy, Hall effect, X-ray ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017